
Infarct size reduction by cyclosporine A at reperfusion
involves inhibition of the mitochondrial permeability
transition pore but does not improve mitochondrial
respiration
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A b s t r a c t

IInnttrroodduuccttiioonn::  Ischemic postconditioning (PoCo) and cyclosporine A (CysA) giv-
en prior to reperfusion reduce myocardial infarct size after ischemia/reperfu-
sion. Ischemic postconditioning’s protection is characterized by better preser-
vation of mitochondrial respiration and calcium retention capacity. Protection
by CysA is not entirely clear. Cyclosporine A inhibits not only mitochondrial per-
meability transition pore (mPTP) opening but also the phosphatase calcineurin.
We have investigated whether CysA mediates protection not only by mPTP inhi-
bition but also through a more upstream inhibition of calcineurin with subse-
quently better preserved mitochondrial respiration.
MMaatteerriiaall  aanndd  mmeetthhooddss::  Anesthetized pigs were subjected to 90 min ischemia
and 10 min reperfusion initiated with either PoCo (6 × 20 s reperfusion/re-occlu-
sion; n = 9), CysA infusion (5 mg/kg i.v.; 5 min before reperfusion; n = 4), or
immediate full reperfusion (IFR; n = 8). Mitochondria were isolated from myocar-
dial tissue for measurement of respiration and calcium retention capacity.
RReessuullttss::  In mitochondria from ischemic/reperfused myocardium, ADP-stimulat-
ed complex I respiration was similar between CysA (116 ±11 nmol O2/min/mg pro-
tein) and IFR (117 ±8), but better preserved with PoCo (160 ±9; p < 0.05). Calci-
um retention capacity was greater with both PoCo and CysA (1096 ±45 and 1287
±128 nmol Ca2+/mg protein) than with IFR (756 ±103; p < 0.05). 
CCoonncclluussiioonnss::  Cyclosporine A’s protection is not associated with improved mito-
chondrial respiration. Protection is unlikely related to an upstream calcineurin
inhibition, but is indeed secondary to mPTP inhibition.

KKeeyy  wwoorrddss::  cyclosporine A, infarct size, ischemic postconditioning, mitochondrion,
myocardial ischemia/reperfusion.

Introduction

Timely restoration of blood flow is mandatory to salvage ischemic
myocardium from irreversible damage; however, reperfusion induces addi-
tional damage, i.e. reperfusion injury, and contributes to final infarct size
[1–3]. 

Ischemic postconditioning (PoCo) – i.e. brief episodes of intermittent
coronary re-occlusion during early reperfusion – and gentle reperfusion
– i.e. slow restoration of coronary blood flow – protect myocardium from
reperfusion injury [4, 5]. Attenuation of reperfusion injury and thus
reduction of final infarct size can also be achieved pharmacologically
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by cyclosporine A (CysA) given prior to reperfu-
sion [6, 7]. 

Infarct size reduction by PoCo and by CysA treat-
ment has been confirmed experimentally in all
species tested so far [8–11] and the cardioprotec-
tive effects of both PoCo and CysA are also opera-
tive in humans. In patients with acute myocardial
infarction, PoCo induced by intermittent re-infla-
tion of the balloon-catheter used for coronary
angioplasty decreased myocardial injury, as meas-
ured by the release of marker enzymes [12–14].
A protective effect of similar magnitude was also
seen in patients with acute myocardial infarction
who were treated with CysA prior to reperfusion
[15]. Both types of cardioprotection may thus share
a common step in their signal transduction. The
underlying mechanisms of cardioprotection during
early reperfusion are not completely understood,
but mitochondria are potential end-effectors of car-
dioprotection. The preservation of mitochondrial
function after ischemia/reperfusion is decisive for
survival of cardiomyocytes and thus salvage of
myocardium [16]. The mitochondrial permeability
transition pore (mPTP) plays an important role in

cell death. Opening of the mPTP results in collapse
of the mitochondrial membrane potential, uncou-
pling of the respiratory chain, and efflux of cyto -
chrome c and other pro-apoptotic factors which
finally induce apoptosis and necrosis [17]. Thus, the
inhibition of mPTP opening appears to be decisive
for cardiomyocyte survival at early reperfusion [17–
19], in particular when the duration of ischemia is
longer than 30 min [20].

Cyclosporine A inhibits the opening of mPTP by
binding to cyclophilin D at the inner mitochondrial
membrane, and CysA’s protection against myocar-
dial infarction is usually attributed to this mecha-
nism [21–23] (Figure 1; path A). However, CysA also
binds to cyclophilin A, which inhibits the calcium-
dependent serine-threonine phosphatase cal-
cineurin [24]. The inhibition of de-phosphorylating
properties of calcineurin could therefore increase/
maintain the phosphorylation of proteins (Figure 1;
path B). Cardioprotective signaling relies indeed on
increased phosphorylation of cardioprotective pro-
teins, and increased phosphorylation of one or more
cardioprotective proteins results in better mito-
chondrial function, which becomes apparent as bet-

IInnffaarrcctt  ssiizzee  rreedduuccttiioonn
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FFiigguurree  11..  Potential mechanisms of protection by cyclosporine A (CysA) through mitochondrial permeability transi-
tion pore (mPTP) inhibition (path A) or calcineurin inhibition after ischemia/reperfusion (path B). Calcineurin inhi-
bition can increase the phosphorylation of cardioprotective proteins. Such an increase in protein phosphorylation
may contribute to better preserved mitochondrial respiration and calcium retention capacity (CRC) and thus ulti-
mately to infarct size reduction
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ter preserved mitochondrial respiration after
ischemia/ reperfusion. Indeed, with cardioprotec-
tion by PoCo, the better preserved mitochondrial
complex I respiration is causally linked to increased
phosphorylation of signal transducer and activator
of transcription 3 (STAT3) in pig cardiomyocyte mito-
 chondria [25].

Calcineurin inhibition might also be associated
with protection of mitochondria. The regulatory
subunit calcineurin B is present in mitochondria
from rat kidneys [26], and calcineurin dephospho-
rylates the pro-apoptotic protein Bad [27] and
enables its translocation into cardiomyocyte mito-
chondria [28]. Cell death induced by stimulation of
rat cardiomyocytes with the β-adrenergic agonist
isoproterenol is secondary to dephosphorylation of
Bad and is inhibited by CysA or the selective cal-
cineurin inhibitor FK506 [29]. In cardiomyocytes iso-
lated from dogs with heart failure, CysA treatment
improves mitochondrial respiration [30]. 

To elucidate whether an improvement of mito-
chondrial function by CysA is mediated not only 
by mPTP inhibition but also by a more upstream
mechanism through calcineurin inhibition with sub-
sequent better respiration, we have used our estab-
lished and clinically relevant in situ model in anes-
thetized pigs [31]. 

In this experimental model infarct size is reduced
by both PoCo and administration of CysA prior to
reperfusion [10, 25]. In the present study we sub-
jected pigs to the same experimental protocols as
in those previous studies, but now measured mito-
chondrial respiration and calcium retention capac-
ity of cardiomyocyte mitochondria harvested at 
10 min reperfusion.

Material and methods

The experimental protocols were approved by
the Bioethical Committee of the district of Düssel-
dorf, Germany, and the investigation conforms to
the Guide for the Care and Use of Laboratory Ani-
mals published by NIH Publication 85-23, revised
1996.

EExxppeerriimmeennttaall  pprreeppaarraattiioonn  aanndd  pprroottooccoollss

Göttinger minipigs (20–40 kg) of either sex were
sedated using ketamine hydrochloride (1 g intra-
muscularly). Anesthesia was induced by thiopental
(500 mg intravenously) and maintained using enflu-
rane (1.5–2.0%) with an oxygen/nitrous oxide mix-
ture (40 : 60%). We used an open-chest pig prepa-
ration with controlled hypoperfusion of the left
anterior descending coronary artery (LAD) perfu-
sion territory through an extracorporeal circuit [31].
Coronary inflow of the LAD was reduced to 10% of
baseline flow and maintained constant at this lev-
el for 90 min. Reperfusion was initiated with a PoCo

maneuver (6 cycles of 20 s re-occlusion/reperfu-
sion; n = 9) or infusion of CysA (5 mg/kg i.v.; n = 4)
5 min before the onset of reperfusion. Due to the
slightly higher viscosity of the CysA solution it had
to be given slowly over 3–4 min. To ensure that the
complete dosage of CysA had become evenly dis-
tributed in the circulation with the beginning of
reperfusion, the CysA infusion was started 5 min
before reperfusion. Pigs subjected to immediate full
reperfusion (n = 8) served as controls. The experi-
ments were terminated at 10 min reperfusion for
tissue sampling (6–10 g) from the area at risk and
a remote control zone as an intra-individual control.
The time point of 10 min reperfusion was chosen
in accordance with our previous studies on cardio-
protection by PoCo [25, 32].

IInnffaarrcctt  ssiizzee

Unlike our previous study [10] in which we
focused on infarct size reduction by PoCo or CysA,
infarct size in the present study was not measura-
ble due to tissue sampling at 10 min reperfusion for
mitochondrial isolation. However, the same in situ
pig model, the same protocols and the same drug
administration scheme were used in the present
study; thus, for infarct size reduction with CysA and
PoCo we refer to our previous study [10].

IIssoollaattiioonn  ooff  mmiittoocchhoonnddrriiaa

Samples were cleaned of adipose tissue and
large vessels, minced and then homogenized (Ultra-
Turrax, IKA, Staufen, Germany; 2 × 10 s at a shaft
rotation rate of 6,500 rpm and 1 × 5 s at 9,500 rpm)
in ice-cold isolation buffer (in mmol/l: sucrose 250;
HEPES 10; EGTA 1, pH 7.4). Bovine serum albumin
(BSA; 5 mg/ml) was added only during the mincing
and homogenizing procedures. The homogenate
was centrifuged at 700 g for 10 min. The super-
natant was collected and centrifuged at 14,000 g
for 10 min. The resulting pellet was resuspended in
isolation buffer and centrifuged at 10,000 g for 
5 min. This procedure was repeated, and the final
mitochondrial pellet was resuspended in an appro-
priate volume of isolation buffer to get a stock sus-
pension with a protein concentration of about
10 µg/µl. All procedures were performed on ice or
at 4°C (centrifugation).

The protein concentration of the isolated mito-
chondria was determined with a DC protein assay
(Biorad, Hercules, CA, USA) with BSA as standard
using the Lowry method [33].

MMiittoocchhoonnddrriiaall  rreessppiirraattiioonn

The oxygen uptake of 50 µg of mitochondrial
protein was measured with a Clark-type electrode
(Strathkelvin, Glasgow, UK) at 37°C during magnetic
stirring in 0.5 ml of incubation buffer (in mmol/l:
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125 KCl; 10 MOPS; 5 MgCl2; 5 KH2PO4; 0.02 EGTA)
with glutamate (5 mmol/l) and malate (5 mmol/l)
as substrates. In sequence, basal oxygen consump -
tion and ADP (400 µmol/l)-stimulated respiration
were recorded for 3 min each. After that, 300 µmol/l
N,N,N,N`-tetramethyl-p-phenylenediamine (T) and
3 mmol/l ascorbate (A) were added to the respira-
tion chamber to determine complex IV respiration.
With subsequent addition of 30 nmol/l carbonyl
cyanide-p-trifluorometho xyphenylhydrazone (FCCP),
the maximal oxygen uptake of uncoupled mito-
chondria was measured. The latter measurements
were used as a quality check to prove equal load-
ing of mitochondrial protein in the respiration
chamber. 

CCaallcciiuumm  rreetteennttiioonn  ccaappaacciittyy

The calcium retention capacity of 100 µg of mito-
chondrial proteins was determined in 1 ml of incu-
bation buffer (without EGTA) at 37°C using 5 mmol/l
glutamate and 5 mmol/l malate as substrates in
the presence of ADP (400 µmol/l). Calcium green-
5N (0.5 µmol/l, Invitrogen, Carlsbad, CA, USA) was
used to measure the extramitochondrial calcium
concentration with a spectrophotometer (Cary
Eclipse, Varian, Mulgrave, Victoria, Australia; exci-
tation/emission wavelengths of 500/530 nm).
Aliquots of 5 nmol CaCl2 were added every minute
until cessation of mitochondrial calcium uptake,
and a rapid increase in calcium green fluorescence
indicated mPTP opening. The small amount of EGTA
which is transferred with mitochondria from stock
suspension into the cuvette impacted only the first
added calcium pulse (tested with mitochondrial free
isolation buffer). This offset was similar with each
measurement.

PPrrootteeiinn  pphhoosspphhoorryyllaattiioonn

Myocardial samples from the area at risk taken
at 10 min reperfusion were homogenized and cen-
trifuged. Protein aliquots of 20 µg were elec-
trophoretically separated on 10% SDS-PAGE and
transferred to nitrocellulose membranes. After
blocking with 5% non-fat dry milk, membranes
were incubated with antibodies directed against
the phosphorylated forms of AKT, ERK1/2, GSK3β,
and STAT3 (phosphorylation sites: tyr705 and ser727).
After incubation with the respective secondary anti-
rabbit antibodies, immunoreactive signals were
detected by chemiluminescence and quantified.
Immunoreactivities of phosphorylated proteins
were normalized to those of the respective total
proteins. 

SSttaattiissttiiccaall  aannaallyyssiiss

Data are means ± SEM. Mitochondrial respira-
tion and calcium retention capacity of mitochon-

dria were compared between groups by one-way
ANOVA (SigmaStat 3.5, SPSS inc.). Protein phos-
phorylation was compared by t-tests. Differences
were considered significant at the level of p < 0.05.

Results

As reported previously, PoCo and CysA given pri-
or to reperfusion reduced infarct size to a similar
extent (Figure 2; from [10]). 

In the present study, the basal oxygen uptake
was not different between groups. Compared to
mitochondria from the non-ischemic remote con-
trol zone, ischemia/reperfusion attenuated the ADP-
stimulated respiration at complex I and maximal
uncoupled respiration. With PoCo, the ADP-stimu-
lated complex I respiration was better preserved
after ischemia/reperfusion, whereas CysA infusion
had no impact on complex I respiration, which was
similar to that with immediate full reperfusion (Fig-
ure 3). Complex IV respiration as well as maximal
uncoupled oxygen uptake was similar between the
three groups, indicating even mitochondrial load-
ing of the respiratory chamber (Figure 4).

Calcium retention capacity of mitochondria was
reduced in myocardium which had undergone
ischemia/reperfusion. Both PoCo and CysA better
preserved calcium retention capacity, and an in -
creased calcium retention capacity with CysA was
also apparent in mitochondria from the non-is -
chemic remote control zone (Figure 5).

CysA treatment had no impact on the protein
phosphorylation of AKT, ERK1/2, GSK3β, and STAT3
(tyr705 and ser727) in myocardial samples taken 
from the area at risk at 10 min reperfusion (Figures
6 A–E). 

Discussion

The notion that myocardial salvage by CysA could
also be mediated by an upstream mechanism
through calcineurin inhibition and subsequently bet-
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ter preservation of mitochondrial respiration is 
not supported by our results. The general depres-
sion of respiration in mitochondria isolated from

ischemic/reperfused myocardium may be related to
the loss/release of cytochrome C during ischemia/
reperfusion [34]. However, at 10 min reperfusion,
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a time point at which we have already described
changes in mitochondrial respiration, calcium reten-
tion capacity and protein phosphorylation related
to the PoCo's cardioprotection [25, 32], mitochon-
drial respiration after ischemia/reperfusion was not
improved by CysA, and phosphorylation of cardio-
protective proteins was not different from that with
ischemia/reperfusion alone (Figures 6 A–E). A few
studies have related increased phosphorylation of

cardioprotective proteins to calcineurin inhibition.
In cardiomyocytes of rats, inhibition of calcineurin
by CysA or the selective calcineurin inhibitor FK506
increased the phosphorylation of protein kinase B
(AKT) [35]. Calcineurin inhibition by FK506 was also
associated with increased phosphorylation of extra-
cellular-signal-regulated kinases 1/2 (ERK1/2) after
ischemia, and this interaction mediated the car-
dioprotection by δ-opioid receptor activation in rats
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AA – AKT at 60 kDa; BB – ERK1/2 at 40/42 kDa; CC – GSK3β
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[36]. Treatment with Cys A or FK506 increased the
phosphorylation of glycogen synthase kinase 3β
(GSK3β) in human neuroblastoma cells [37] and
increased phosphorylation of GSK3β in cardiomy-
ocytes inhibits mPTP opening in rodents [38]. In iso-
lated guinea pig hearts Cys A treatment prior to
ischemia increased the phosphorylation of AKT and
GSK3β [39]. Common to all these studies, howev-
er, was that they involved proteins of the reperfu-
sion injury salvage kinase (RISK) pathway, which is
not involved in cardioprotection at reperfusion in
pigs [32].

We have recently shown in our experimental
model that PoCo increased the phosphorylation of
mitochondrial STAT3. which in turn resulted in bet-
ter preserved mitochondrial ADP-stimulated com-
plex I respiration after ischemia/reperfusion. The
pharmacological inhibition of STAT3 phosphoryla-
tion during ischemia/reperfusion in vivo abolished
this better preservation of mitochondrial function
with PoCo and also abrogated the infarct size reduc-
tion [25]. Consequently, the lack of impact of CysA
on mitochondrial respiration in the present study
supports the notion that CysA’s protection is indeed
not mediated by increased protein phosphorylation.

Whether or not mitochondrial respiration is
improved by CysA or the selective calcineurin in -
hibitor FK506 is currently controversial. The statin-
induced impairment of mitochondrial ADP-stimu-
lated complex I respiration of prostate cancer cells
was improved with CysA and FK506, but in this
study there was also an increase in the maximal
uncoupled oxygen uptake with FCCP [40], possibly
reflecting unequal loading of the respiratory cham-
ber. Improvement of mitochondrial respiration in
isolated rat hearts subjected to 30/60 min ischemia
was observed with CysA, but not with FK506, which
does not act on calcineurin [41]. Also, FK506 does
not protect against infarction after ischemia/reper-
fusion in rat [6] or rabbits hearts [42].

In our in situ pig model, infarct size was reduced
by CysA infusion to a similar extent as with PoCo
[10], supporting the notion that cardioprotection 
by CysA is indeed induced by inhibition of mPTP
opening. The calcium retention capacity was even
better preserved than with PoCo, and increased cal-
cium retention capacity was also seen in mito-
chondria harvested from the remote non-ischemic
myocardium.

In conclusion, the lack of improvement in mito-
chondrial respiration in ischemic/reperfused myo -
cardium with CysA treatment at reperfusion does
not support a potential upstream mechanism
through calcineurin inhibition.
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